DUCTILE IRON DATA FOR DESIGN ENGINEERS

 

Home Page

SECTION XII.  SPECIFICATIONS

Introduction
North America
Other Standards
Beyond Specifications
References

Introduction
The purpose of standard specifications for Ductile Iron castings is to provide a body of information which can be used with confidence by both designer and foundry to select, define and agree upon a set of specific properties which will ensure that the castings meet the intended use of the designer. The use of standard specifications simplifies the purchase of castings from multiple suppliers because it defines a standard casting whose properties meet the designer's needs, regardless of where, or how the castings were produced.

Specifications should be chosen carefully and used sparingly to ensure that they adequately define the designer's needs without adding superfluous constraints which needlessly restrict the suppliers' options, complicate the casting process and increase the cost of the casting. It is the responsibility of both the designer and the foundry to be aware of the role and the limitations of specifications and to agree upon a specification that provides the optimum ratio of performance to cost. It is up to the designer to specify a set of properties - mechanical, physical, chemical or dimensional - which best suit the casting to its purpose.

Once the specification has been selected, the foundry must ensure that all castings delivered meet or exceed the specification. The raw materials and production methods used by the foundry to provide conforming castings are not normally restricted by the designer or the specification unless the specification includes such instructions, or the designer and foundry agree to append additional instructions to a specification. Such instructions should be used judiciously, because they almost invariably increase the casting cost and restrict the number of foundries which can provide competitive bids.

Back to Top

 

North America
The ASTM has five standards covering Ductile Iron castings. ASTM A 536 is the most frequently used, covering the general engineering grades of Ductile Iron. The other standards cover austenitic and special Ductile Iron applications. The ASTM has issued in 1990 a new specification defining the properties of Austempered Ductile Iron. The SAE standard J434 is commonly used for specifying automotive Ductile Iron castings. In an attempt to create a single, comprehensive system for designating metals and alloys the ASTM and SAE have jointly developed the Unified Numbering System (UNS). While not itself a specification, the UNS designation is gaining some degree of acceptance in North America as a useful means of simplifying and correlating the various existing specifications. The UNS designations for Ductile Irons, crossreferenced to the corresponding ASTM, AMS, SAE and MIL specifications, are shown below.

UNS numbers and corresponding American specifications

Standard Numbers/Grades
UNS F3000 F32800 F32900 F33100 F33101 F33800 F34100
ASTM A395    60-40-18               
ASTM A536    60-40-18    65-45-12    80-55-06   
ASTM A476                    80-60-03
ASTM A716       ******            
AMS             5315    5316
SAE J434 DQ & T

D4018  

   D4512    D5506   
MIL-I-24137             (A)      
  
UNS F34800 F36200 F43000 F43001 F43002 F43003 F43004
ASTM A439       D-2 D-2B D-2C C-3 C-3A
ASTM A536 100-70-03 120-90-02               
SAE J434 D7003                  
  
UNS F43005 F43006 F43007 F43010 F43020 F43021 F43030
ASTM A439 D-4 D-5 D-5B            
ASTM A571          D-2M         
AMS                   5395
MIL-I-24137             (B) (C)   

Back to Top

Other Standards
This section also summarizes the national standards for Ductile Iron for the other major industrialized countries and the international ISO standard. This standard, and its replacement, the EuroNorm standard EN will become increasingly important with the formation of the European Community. There are many additional standards for Ductile Iron, some national, and others valid only within a specific technical or commercial organization. While each specification may have its own distinguishing characteristics, there are also many similarities between specifications. Before using any specification, the designer should obtain a complete copy of the current issue from the specifying body to familiarize himself with both the properties specified and the conditions under which they are to be measured.

Standard specifications for Ductile Iron are normally based on mechanical properties, except for those defining austenitic Ductile Iron, which are based on composition. Mechanical property values are given in the units normal to the particular specifying body. Conversions for SI, metric non-SI, and non-metric units are given at the end of this section to assist in comparing specifications.

DUCTILE IRON SPECIFICATIONS

ASTM A 395    FERRITIC DUCTILE IRON PRESSURE-RETAINING CASTINGS FOR USE
                         AT ELEVATED  TEMPERATURES

This standard specifies chemical, physical, and hardness requirements.
Chemical Requirements
The castings shall conform to the following
requirements for chemical composition (Note 3):
Physical Requirements
Tensile Properties - The Ductile Iron as represented by the
test specimens shall conform to the following requiremenets
for tensile properties:
Total carbon, min, %
Silicon, max, %
Phosphorus, max, %
3.00
2.50
0.08
Tensile strength, min, psi (MPa)
Yield strength, min, psi (MPa)
Elongation in 2 in. or 50 mm min.
60 000 (414)
40 000 (276)
18%
Hardness: - The hardness of the heat-treated Ductile Iron as
represented by the test specimens and castings shall be within
the following limits:
HB, 3000-kgf load 143 to 187

 Back to Top

ASTM A439   AUSTENITIC DUCTILE IRON CASTINGS

Chemical Requirements

 

Element

Type
D-2A D-2B D-2C D-3A D-3A D-4 D-5 D-5B D-5S

Composition, %

Total carbon, max 3.00 3.00 2.90 2.60 2.60 2.60 2.40 2.40 2.30
Silicon 1.50-3.00 1.50-3.00 1.00-3.00 1.00-2.80 1.00-2.80 5.00-6.00 1.00-2.80 1.00-2.80 4.90-5.50
Manganese 0.70-1.25 0.70-1.25 1.80-2.40 1.00 maxB 1.00 maxB 1.00 maxB 1.00 maxB 1.00 maxB 1.00 max
Phosphorus, max 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08
Nickel 18.00-22.00 18.00-22.00 21.00-24.00 28.00-32.00 28.00-32.00 28.00-32.00 34.00-36.00 34.00-36.00 34.00-37.00
Chromium 1.75-2.75 2.75-4.00 0.50-maxB 2.50-3.50 1.00-1.50 4.50-5.50 0.10 max 2.00-3.00 1.75-2.25
A Additions of 0.7 to 1.0% of molybdenum will increase the mechanical properties above 800oF (425oC).
B Not intentionally added.

 Back to Top

Mechanical Requirements

Element Type
D-2 D-2B D-2C D-3 D-3A D-4 D-5 D-5B D-5S

Properties

Tensile strength, min, ksi (MPa) 58 (400) 58 (400) 58 (400) 55 (379) 55 (379) 60 (414) 55 (379) 55 (379) 65 (449)
Yield strength (0.2 percent
offset), min, ksi (MPa)
30 (207) 30 (207) 28 (193) 30 (207) 30 (207) -- 30 (207) 30 (201) 30 (207)

Elongation 2 in. or 50mm, min, %

8.0 7.0 20.0 6.0 10.0 -- 20.0 6.0 10
Brinell hardness (300 kg) 139-202 148-211 121-171 139-202 131-193 202-273 131-185 139-193 131-193

 Back to Top

ASTM A 476  DUCTILE IRON CASTINGS FOR PAPER MILL DRYER ROLLS
Chemical Requirements Tensile Requirements
The castings shall conform to the following chemical
requirements:
Test Coupon Section Thickness 1 in. 3 in.
Total carbon, min, % 3.0 Tensile strength, min, ksi 80 80
Silicon, max, % 3.0 Yield strength, min, ksi 60 60
Phoshorus, max, % 0.08 Elongation in 2 in., min, % 3.0 1.0
Sulfur, max, % 0.05  
The castings shall have a carbon equivalent of
3.8 to 4.5 inclusive.

 Back to Top

ASTM  A 536 DUCTILE IRON CASTINGS

Tensile Requirements

  Grade
60/40/18
Grade
65/45/12
Grade
80/55/06
Grade
100/70/03
Grade
120/90/02
Tensile strength, min, psi 60 000 65 000 80 000 100 000 120 000
Tensile strength, min, MPa 414 448 552 689 827
Yield strength, min, psi 40 000 45 000 55 000 70 000 90 000
Yield strength, min, MPa 276 310 379 483 621
Elongation in 2 in. or 50 mm,
min, %
18 12 6.0 3.0 2.0
Tensile Requirements for Special Applications
  Grade
60/42/10
Grade
70/50/05
Grade
80/60/03
Tensile strength, min, psi 60 000 70 000 80 000
Tensile strength, min, MPa 415 485 555
Yield strength, min, psi 42 000 50 000 60 000
Yield strength, min, MPa 290 345 415
Elongation in 2 in. or 50 mm, min, % 10 5 3

 Back to Top

ASTM A 571  AUSTENITIC DUCTILE IRON CASTINGS FOR PRESSURE-
                        CONTAINING PARTS SUITABLE FOR LOW-TEMPERATURE SERVICE

This standard specifies that all castings shall be heat treated by annealing between
1600 and 1800oF for 1 hour per inch of casting section and furnace cooling.

Chemical Requirements

Mechanical Property RequirementsA

Element Composition, % Class 1 Class 2
Total carbon 2.2-2.7A Tensile Strength, min, ksi 65 60
Silicon 1.5-2.50 Yield Strength 0.2% (offset), min,
ksi
30 25
Manganese 3.75-4.5 Elongation, min, % 30 25
Nickel 21.0-24.0 Brinell Hardness, 3000 kg 121-171 111-171
Chromium 0.20 max Charpy V-notch, ft-lbf
min, average 3 tests
15 20
Phosphorus 0.08 max min, individual test 12 15
A For castings with sections under 1/4 in., it may be desirable
to adjust the carbon upwards to a maximum of 2.90%.
A Heat-treated condition

 Back to Top

ASTM A 897           AUSTEMPERED DUCTILE IRON
          A897 M
  Min. Tensile Str. Min. Yield Str. Elongation Impact Energy* Hardness
Grade MPa Ksi MPa Ksi Percent Joules Ft-lb BHN**
125/80/10   125   80 10   75 269-321
850/550/10 850   550   10 100   269-321
150/100/7   150   100 7   60 302-363
1050/700/7 1050   700   7 80   302-363
175/125/4   175   125 4   45 341-444
1200/850/4 1200   850   4 60   341-444
200/155/1   200   155 1   25 388-477
1400/1100/1 1400   1100   1 35   388-477
230/185/-   230   185 ***   *** 444-555
1600/1300/- 1600   1300   *** ***   444-555
*    Values obtained using unnotched Charpy bars tested at 72 deg. F (20 deg. C). The values in the table are the average of the
      three highest of four tested samples.
**   Hardness is not a mandatory specification and is shown for information only.
*** Elongation and impact specifications are not required.
Complete specifications may be obtained from:
American Society for Testing Materials. 1916 Race Street, Philadelphia, PA  19103.
Society of Automotive Engineers Inc., 485 Lexington Ave., New York , NY  10017.
American Society of Mechanical Engineers, 345 East 47th Street.  New York, NY   10017.

NOTE:  SAE specification for Ductile Iron casting and austempered Ductile Iron casting are currently being revised so they
were not available as of the time of this printing.

Back to Top

SAE J434 FEB2004    AUTOMOTIVE DUCTILE IRON CASTINGS
 

Grade

Tensile strength, Rm1 min. Yield strength, Proof stress, Rpo.2 min. Relative Wall Thickness Charpy Impact Energy Typical Impact Values Elongation Hardness  

 Structure

N/mm2 ksi

     N/mm2

ksi Joules ft.-lb. % HBW (Mpa)
 D400 (D4018) 400 58     275 40 <=20mm 120 90 18 143-170  (1402-1667) Ferrite
 D450 (D4512) 450 65     310 45 <=20mm 80 60 12 156-217 (1530-2128) Ferrite-Pearlite
 D500 (D5506) 500 73     345 50 <=20mm 54 40 6 187-229 (1834-2246) Ferrite-Pearlite
 D550 (D5504) 550 80     380 55 <=20mm 40 30 4 217-269 (2128-2638) Pearlite-Ferrite
 D700 (D7003) 700 102     450 65 <=20mm 27 20 3 241-302 (2363-2961) Pearlite 
 D800 800 116     480 70       2 255-311 (2501-3050) Pearlite or Tempered Martensite
 DQ&T A wide variety of properties are possible. Minimum properties are specified by agreement between manufacturer and purchaser. Range specified by agreement Tempered Martensite
* These irons are primarily specified on hardness and structure.  The mechanical properties are given for information only.
**Quenched and tempered grade; hardness to be agreed between supplier and purchaser.

Back to Top 

JAPAN                    AUSTEMPERED SPHEROIDAL GRAPHITE IRON
JIS G 5503-1995      CASTINGS
Mechanical properties of separately cast test sample
Symbol of grade Tensile strength N/mm2 Yield strength N/mm2 Elongation % Hardness HB
FCAD 900-4 900 min. 600 min. 4 min. -
FCAD 900-8 900 min. 600 min. 8 min. -
FCAD 1000-5 1000 min. 700 min. 5 min. -
FCAD 1200-2 1200 min. 900 min. 2 min. 341 min.
FCAD 1400-1 1400 min. 1100 min. 1 min. 401 min.

 Back to Top

JAPAN                        SPHEROIDAL GRAPHITE IRON CASTINGS
JIS G 5502-1995
Mechanical properties of separately cast test sample
Symbol of grade Tensile strength N/mm2 Yield strength N/mm2 Elongation
%
Charpy absorption energy (Information reference)
 

350 min.

 

Test Temp. oC

Mean value of 3 pieces J Individual value J Hardness HB Matrix structure
FCD 350-22 220 min. 22 min. 23 ± 5 17 min. 14 min. 150 max. Ferrite
FCD 350-22L -40 ± 2 12 min. 9 min.
FCD 400-18 400 min. 250 min. 18 min. 23 ± 5 14 min. 11 min. 130 to 180
FCD 400-18L -20 ± 2 12 min. 9 min.
FCD 400-15 15 min. - - -
FCD 450-10 450 min. 280 min. 10 min. 140 to 210
FCD 500-7 500 min. 320 min. 7 min. 150 to 230 Ferrite + pearlite
FCD 600-3 600 min. 370 min. 3 min. 170 to 270 Pearlite + ferrite
FCD 700-2 700 min. 420 min. 2 min. 180 to 300 Pearlite
FCD 800-2 800 min. 480 min. 200 to 330 Pearlite or tempered structure

 Back to Top

Mechanical properties of cast-on test sample
Symbol of grade Chief thickness of iron casting mm Tensile strength N/mm2 Yield strength N/mm2 Elongation
%
Charpy absorption energy (Information reference)

Test Temp. oC

Mean value of 3 pieces J Individual value J Hardness HB Matrix structure
FCD 400-18A Over 30, up to and incl. 60 390 min. 250 min. 15 min. 23 ± 5 14 min. 11 min. 120 to 180 Ferrite
Over 60, up to and incl. 200 370 min. 240 min. 12 min. 12 min. 9 min.
FCD 400-18AL Over 30, up to and incl. 60 390 min. 250 min. 15 min. -20 ± 2
Over 60, up to and incl. 200 370 min. 240 min. 12 in. 10 min. 7 min.
FCD 400-15A Over 30, up to and incl. 60 390 min. 250 min. 15 min. - - -
Over 60, up to and incl. 200 370 min. 240 min. 12 min.
FCD 500-7A Over 30, up to and incl. 60 450 min. 300 min. 7 min. 130 to 230 Ferrite + pearlite
Over 60, up to and incl. 200 420 min. 290 min. 5 min.
FCD 600-3A Over 30, up to and incl. 60 600 min. 360 min. 2 min. 160 to 270 Pearlite + ferrite
Over 60, up to and incl. 200 550 min. 340 min. 1 min.

 Back to Top

EUROPEAN STANDARD           SPHEROIDAL GRAPHITE CAST IRONS
EN 1563 : 1997
Mechanical properties measured on test pieces machined from separately cast samples
Material   designation Tensile strength
Rm
N/mm2

min.

0.2% proof stress
Rp0.2
N/mm2

min.

Elongation
A
%

min.
Symbol Number
EN-GJS-350-22-LT1) EN-JS1015 350 220 22
EN-GJS-350-22-LT2) EN-JS1014 350 220 22
EN-GJS-350-22-LT EN-JS1010 350 220 22
EN-GJS-400-18-LT1) EN-JS1025 400 240 18
EN-GJS-400-18-LT2) EN-JS1024 400 250 18
EN-GJS-400-18-LT EN-JS1020 400 250 18
EN-GJS-450-15 EN-JS1030 400 250 15
EN-GJS-450-10 EN-JS1040 450 310 10
EN-GJS-500-7 EN-JS1050 500 320 7
EN-GJS-600-3 EN-JS1060 600 370 3
EN-GJS-700-2 EN-JS1070 700 420 2
EN-GJS-800-2 EN-JS1080 800 480 2
EN-GJS-900-2 EN-JS1090 900 600 2
1) LT for low temperature.
2) RT for room  temperature.

NOTE 1.  The values for these maerials apply to castings cast in sand moulds of comparable thermal diffusivity.  Subject to amendments to be agreed upon in the order, they can apply to castings obtained by alternative methods.

NOTE 2.  Whatever the method used for obtaining the castings, the grades are based on the mechanical properties measured on test pieces taken from samples separately cast in a sand mould or a mould of comparable thermal diffusivity.

NOTE 3.  1N/mm2 is equivalent to 1 MPa.

NOTE 4.  the material designation is in accordance with EN 1560.

Minimum impact resistance values measured on V-notch test pieces
machines from separately cast samples

Back to Top

Material designation Minimum impact resistance values (in J)
  At room temp.
(23 ± 5) oC
At (-20 ± 2) oC At (-40 ± 2) oC
Symbol Number Mean value from 3 tests Individual value Mean value from 3 tests Individual value Mean value from 3 tests Individual value
EN-GJS-350-22-Lt1) EN-JS1015 - - - - 12 9
EN-GJS-350-22-Rt2) EN-JS1014 17 14 - - - -
EN-GJS-400-18-Lt1) EN-JS1025 - - 12 9 - -
EN-GJS-400-18-Lt2) EN-JS1024 14 11   - - - -

1) Lt for low temperature.
2) Rt for room  temperature.

NOTE 1.  the values for these maerials apply to castings cast in sand moulds of comparable thermal diffusivity.  Subject to amendments to be agreed upon in the order, they can apply to castings obtained by alternative methods.

NOTE 2.  Whatever the method used for obtaining the castings, the grades are based on the mechanical properties measured on test pieces taken from samples separately cast in a sand mould or a mould of comparable thermal diffusivity.

NOTE 3.   the material designation is in accordance with EN 1560.

 Back to Top

EUROPEAN STANDARD
EN 1563 : 1997 (continued)

Mechanical properties measured on test pieces machined from separately cast samples

Material   designation

Relevant wall thickness
t
mm

tensile strength
Rm
N/mm2

min.

0.2% proof stress
Rp0.2
N/mm2

min.

Elongation

A
%

min.


Symbol
Number
EN-GJS-350-22U-Lt1) EN-JS1019 t<30
30<t<60
60<t<200
350
330
320
220
210
200
22
18
15
EN-GJS-350-22U-Rt2) EN-JS1029 t<30
30<t<60
60<t<200
350
330
320
220
210
200
22
18
15
EN-GJS-350-22U EN-JS1032 t<30
30<t<60
60<t<200
350
330
320
220
210
200
22
18
15
EN-GJS-400-18U-LT1) EN-JS1049 t<30
30<t<60
60<t<200
400
390
370
240
230
220
18
15
12
EN-GJS-400-18U-RT2) EN-JS1059 t<30
30<t<60
60<t<200
400
390
370
250
250
240
18
15
12

EN-GJS-400-18U

EN-JS1062 t<30
30<t<60
60<t<200
400
390
370
250
250
240
18
15
12

EN-GJS-400-15U

EN-JS1072 t<30
30<t<60
60<t<200
400
390
370
250
250
240
15
14
11

EN-GJS-450-10U

EN-JS1132 t<30
30<t<60
60<t<200

          450                     310                          10
} To be agreed between the manufacturer
       and  the  purchaser.

EN-GJS-500-7U EN-JS1082 t<30
30<t<60
60<t<200
500
450
420
320
300
290
7
7
5
EN-GJS-600-3U EN-JS1092 t<30
30<t<60
60<t<200
600
600
550
370
360
340
3
2
1

EN-GJS-700-2U

EN-JS1102 t<30
30<t<60
60<t<200
700
700
660
420
400
380
2
2
1

EN-GJS-800-2U

EN-JS1112 t<30
30<t<60
60<t<200

          800                     480                          2
} To be agreed between the manufacturer
         and  the  purchaser.

EN-GJS-900-2U

EN-JS1122 t<30
30<t<60
60<t<200

       900                     480                          2
} To be agreed between the manufacturer
         and  the  purchaser.

1) LT for low temperature.
2) RT for room temperature.

NOTE 1.  The properties of a cast-on test piece cannot exactly the properties of the casting itself, but can be a better approximation than those obtained on a separtely cast sample.  Further values are given in annex D for guidance.

NOTE 2.  N/mm2 is equivalent to 1 MPa.

NOTE 3.  The material designation is in accordance with EN 1560.

Back to Top

EUROPEAN STANDARD
EN 1563 : 1997 (continued)

Material designation   Brinell hardness range
HB
Other properties
(for information only)
Rm
N/mm2
Rp0.2
N/mm2
Symbol Number
EN-GJS-HB130 EN-JS2010 Less than 160 350 220
EN-GJS-HB150 EN-JS2020 130 to 175 400 250
EN-GJS-HB155 EN-JS2030 135 to 180 400 250
EN-GJS-HB185 EN-JS2040 160 to 210 450 310
EN-GJS-HB200 EN-JS2050 170 to 230 500 320
EN-GJS-HB230 EN-JS2060 190 to 270 600 370
EN-GJS-HB265 EN-JS2070 225 to 350 700 420
EN-GJS-HB3001) EN-JS20801) 245 to 335 800 480
EN-GJS-HB3301) EN-JS20901) 270 to 360 900 600
1) EN-GJS-HB300 (EN-JS2080) and EN-GJS2090) are not recommended for thick section castings.

NOTE 1.  1 N/mm2 is equivalent to 1 MPa.

Back to Top

Minimum impact resistance values measured on V-notched test pieces machined from cast-on samples

Material designation Relevant wall thickness
t

 

 

mm

Minimum impact resistance values (in J)
At room temperature
(23+5) oC
At (-20+2) oC At (-40+2) oC
Symbol Number Mean value from 3 tests Individual value Mean value from 3 tests Individual value Mean value from 3 tests Individual value
EN-GJS-350-22U-LT1) EN-JS1019 t<60
60<t<200
- - - - 12
10
9
7
EN-GJS-350-22U-RT2) EN-JS1029 t<60
60<t<200
17
15
14
12
- - - -
EN-GJS-400-18U-LT1) EN-JS1049 30<t<60
60<t<200
- - 12
10
9
7
- -
EN-GJS-400-18U-RT2) EN-JS1059 30<t<60
60<t<200
14
12
11
9
- - - -

1) LT for low temperature.
2) RT for room temperature.

NOTE 1.  The values for the materials normally apply to castings with thicknesses between 30 mm and 200 mm and with a mass greater than 2000 kg or when the relevant wall thickness may vary between 30 mm and 200 mm.

NOTE 2.  The properties of a cast-on test piece cannot reflect exactly the properties of the casting itself, but can be a better approximation than those obtained on a separately cast sample.  Further values are given in annex D for guidance.

NOTE 3.  1 N/mm2 is equivalent to 1 MPa.

NOTE 4.  The material designation is in accordance with EN 1560.

Back to Top

EUROPEAN STANDARD      AUSTEMPERED DUCTILE CAST IRONS
EN 1564 : 1997

Mechanical properties measured on test pieces machined from separately cast samples.

Material designation Tensile strength
Rm
N/mm2
min.
0.2% proof stress
Rp0.2
N/mm2
min.
Elongation
A
%
min.
Symbol Number
EN-GJS-800-8 EN-JS1100 800 500 8
EN-GJS-1000-5 EN-JS1110 1000 700 5
EN-GJS-1200-2 EN-JS1120 1200 850 2
EN-GJS-1400-1 EN-JS1130 1400 1100 1

NOTE 1.  The values for the materials apply to castings cast in sand moulds of comparable thermal diffusivity.   Subject to amendments to be agreed upon in the order, they can apply to castings obtained by alternative methods.

NOTE 2.  Whatever the method used for obtaining the castings, the grades are based on the mechanical properties measured on test pieces taken from samples separately cast in a sand mould or a mould of comparable thermal diffusivity.

NOTE 3.  1 N/mm2 is equivalent to 1 MPa.

NOTE 4.  The material designation is in accordance with EN 1560.

Back to Top

Hardness range

Material designation Brinell hardness range
HB
Symbol Number
EN-GJS-800-8 EN-JS1100 260 to 320
EN-GJS-1000-5 EN-JS1110 300 to 360
EN-GJS-1200-2 EN-JS1120 340 to 440
EN-GJS-1400-1 EN-JS1130 380 to 480

NOTE:  The material designation is in accordance with EN 1560.

SOUTH AFRICA               SPHEROIDAL GRAPHITE IRON CASTINGS
SABS 936/937

  Tensile strength
Rm min.
Proof stress
Rp0.2 min.
Elongation
A min.
Hardness  
Grade N/mm2 kgf/m2 ton/in2 N/mm2 kgf/m2 ton/in2 % HB §Structure
SG38 375 38.0 24.2 245 25.0 16.0 17 <180 Ferrite
SG42 410 42.0 2.5 275 28.1 17.7 12 <200 Ferrite
SG50 490 50.0 31.7 345 35.2 22.3 7 §170 - 240 Ferrite & pearlite
SG60 590 60.0 38.1 390 39.8 25.2 4 §210 - 250 Pearlite
SG70 685 70.0 44.4 440 44.9 28.5 3 §230 - 300 Pearlite
SG80 785 80.0 50.8 490 50.0 31.7 2 §260 - 330 Pearlite or temper structure

§ For information only.

SOUTH AFRICA             AUSTEMPERED DUCTILE IRON CASTINGS
SABS 1656 : 1995

Grade Minimum tensile strength
Rm
MPa
Minimum proof stress Rp0.2
MPa
Minimum elongation
%
Impact strength
(energy loss)
J
Hardness 1)
ADI 850 850 550 10 100 269 - 321
ADI 1050 1050 700 7 80 302 - 363
ADI 1200 1200 850 4 60 341 - 444
ADI 1400 1400 1100 1 35 388 - 477
ADI 1600 1600 1300 - - 444 - 555
1) For information only.

SOUTH AFRICA        AUSTENITIC SPHEROIDAL GRAPHITE IRON CASTINGS

  Tensile strength
Rm min.
Proof stress
Rp0.2 min.
Elongation
A min.
Hardness
max.
Grade N/mm2 kgf/m2 ton/in2 N/mm2 kgf/m2 ton/in2 % HB
ASG-2A 375 38.0 24.2 205 21.0 13.3 8 200
ASG-2B 375 38.0 24.2 205 21.0 13.3 6 255
ASG-3A 375 38.0 24.2 195 20.0 12.5 20 170
ASG-4A 375 38.0 24.2 205 21.0 13.3 10 230
ASG-5A 375 38.0 24.2 205 21.0 13.3 7 200
ASG-6A 410 42.0 26.5 205 21.0 13.3 25 170

PHYSICAL PROPERTIES OF SOME ELEMENTS

Element Symbol Atomic Weight Melting Point Boiling Point oF Density grs/cc
oF oC
Aluminum Al 26.97 1220 660 3272 2.70
Antimony Sb 121.76 1167 630 2516 6.62
Barium Ba 137.36 1562 850 2084 3.50
Beryllium Be 9.02 2462 1350 2732 1.82
Bismuth Bi 209.00 520 271 2642 9.8
Boron B 10.82 4172 2282 4622 2.30
Cadmium Cd 112.41 610 321 1408 8.65
Calcium Ca 40.08 1564 851 2522 1.55
Carbon C 12.00 - - 6512 2.22
Cerium Ce 140.13 1427 640 2552 6.79
Chromium Cr 52.01 3326 1812 3992 7.14
Cobalt Co 58.94 2696 1480 5252 8.90
Columbium Nb 92.91 3542 1932 5972 8.57
Copper Cu 63.57 1982 1082 4259 8.94
Gold Au 197.20 1945 1062 4712 1930
Iron Fe 55.84 2795 1535 5430 7.87
Lead Pb 207.22 621 327 2948 11.35
Lithium Li 6.94 367 186 2437 0.53
Magnesium Mg 24.32 1204 652 2007 1.74
Manganese Mn 54.94 2273 1245 3452 7.20
Mercury Hg 200.61 -38 - 676 13.55
Molybdenum Mo 96.00 4748 2602 6692 10.20
Mickel Ni 58.69 2645 1452 5252 8.85
Palladium Pd 106.70 2831 1555 3992 12.00
Phosphorous P 31.02 111 42 536 1.82
Platinum Pt 195.23 3224 1755 7772 21.45
Potassium K 39.09 144 62 1400 0.86
Rhodium Rh 102.91 3551 1882 4532 12.50
Selenium Se 78.96 428 220 1270 4.81
Silicon Si 28.06 2588 1420 4712 2.40
Silver Ag 107.88 1761 961 3542 10.50
Sodium Na 22.99 207 97 1616 0.97
Strontium Sr 87.63 1472 800 2102 2.60
Sulfur S 32.06 235 112 832 2.07
Tantalum Ta 180.88 5162 2832 7412 16.60
Tellurium Te 127.61 846 451 2534 6.24
Thallium Ti 204.39 578 302 3002 11.85
Thorium Th 232.12 3353 1827 5432 11.50
Tin Sn 118.70 450 232 4100 7.30
Titanium Ti 47.90 3272 1782 5432 4.50
Tungsten W 184.00 6098 3334 10526 19.30
Uranium U 238.14 3074 1672 6332 18.70
Vanadium V 50.95 3110 1692 5432 5.68
Zinc Zn 65.38 787 419 1661 7.14
Zirconium Zr 91.22 3092 1682 5252 6.40

 

Back to Top

CONVERSIONS:  English, SI units, and non-SI metric units

1 lbf/in2 = 1 psi
1 ksi = 1000 psi
= 6.895 N/m2
= 6.895 MPa
= 0.7031 kgf/mm2
=0.4464 tonf/in2
1 N/mm2 = 1 MN/m2
= 1 MPa
= 0.06475 tonf/in2
= 145.04 lbf/in2
= 0.10197 kgf/mm2
1 kgf/mm2 = 9.8067 N/mm2
= 0.63497 tonf/in2
= 1422.4 lbf/in2
1 tonf/in2 = 15.444 N/mm2
= 1.5749 kgf/mm2
= 2240 lbf/in2
1 ft-lbf = 1.3558 J
= 0.1369 kgf-m
1 J = 0.73757 ft-lbf
= 0.10197 kgf-m
1kgf-m = 9.8067J
= 7.3068 ft lbf

 

  Units English Multiplication Factor SI Units
Area in2 6.45 cm2
Area ft2 .093 m2
Length in 2.54 cm
Length ft .305 m
Mass lb. .454 kg
Temp (oF - 32) .556 oC

Back to Top

Beyond Specifications
Standards and specifications ensure uniformity and assist both the designer and the foundry in defining the most important properties of the castings. However, most of the specifications identify either minimum properties, or ranges of properties, inferring that all castings whose properties either exceed the minimum or lie anywhere within the range, are equally acceptable. This inference is incorrect, and high quality castings, whose properties either consistently exceed requirements, or fall well within specified ranges, offer the designer a competitive edge. Through commitments to SPC and continual quality improvement, many foundries have developed the capability to produce castings whose higher quality can be demonstrated statistically. Designers should take advantage of these capabilities to obtain assured quality which is superior to that required by specifications.

REFERENCES
Annual Book of ASTM Standards, Volume 01.02, Ferrous Castings, 1987.

I. C. H. Hughes, "Ductile Iron," Metals Handbook, American Society for Metals. Vol. 15, 9th edition, 1988.

American Society of Automotive Engineers Inc., Warrendale, PA, 1989.

Back to Top